

3.1 Exponential and Logistic Functions

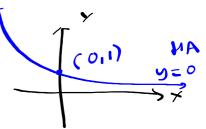
Definitions

Exponential functions $f(x)=ab^x$

 $a \neq 0$ and b is positive and $\neq 1$. The constant a is the initial value (at x=0) and b is the base.

Exponential Growth and Decay

For any exponential function $f(x)=ab^x$


Exponential growth

a>0 and b>1, b is the growth factor.

(0,0) ×

Exponential decay

If a>0 and b<1, b is the decay factor.

Identifying Exponential functions

Determine whether or not the following are exponential functions. If so state the base and the initial value of the function.

a)
$$f(x) = -3(5)^x$$

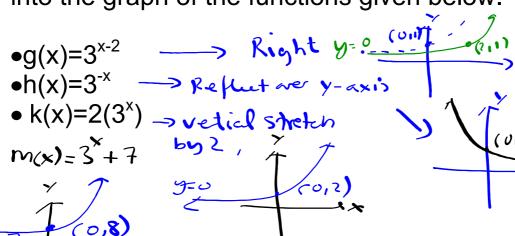
yes
$$b = 5$$

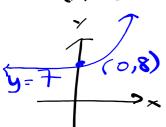
$$a = Iv = -3$$
(b) $f(x) = 0x$

$$varable$$

a)
$$f(x) = -3(5)^x$$
 (b) $f(x) = 8x^9$ (c) $f(x) = 15^x$ (d) $f(x) = 7(2^{-x})$

(c)
$$f(x) = 15$$


d)
$$f(x) = 7(2^{x})$$


7es 7es
$$a = 1$$
 $a = 7$ $b = 15$ $b = 2^{-1} = \frac{1}{2}$

Transforming Exponential Functions

Describe how to transform the graph of $f(x)=3^x$ into the graph of the functions given below.

Using tables to find exponential functions

Ex. 2

Determine the exponential function represented by the data in the table.

_		
	f(x)	x
	3/4	-2
	3/2	-1
<	3	0
<	6	1
	12	2

$$y = ab^*$$

$$3 = ab^*$$

$$3 = a$$

$$9 = 3b^{x}$$

$$6 = 3b'$$

$$2 = b$$

TRY

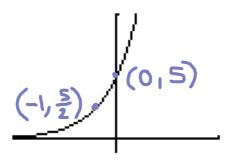
Determine the exponential function represented by the data in the table.

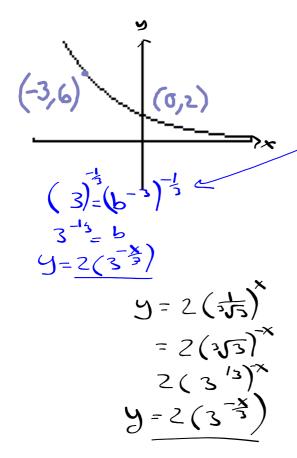
x	g(x)
-2	18
-1	6
0	2
1	2/3
2	2/9

$$9(x) = 2b'$$

$$6 = 2b''$$

$$3 = b''$$

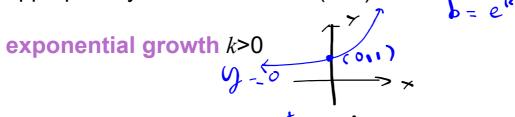

$$3 = \frac{1}{b}$$

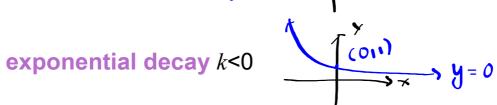

$$b = \frac{1}{3}$$

$$y = 2(\frac{1}{3})^{x}$$

 $y = 2(3^{-1})^{x}$
 $9(x) = 2(3^{-x})$

Given the graph below, determine a formula for the exponential function.


$$y = 2b^{x}$$
 $6 = 2b^{-3}$
 $3 = b^{-3}$
 $3 = \frac{1}{b^{3}}$
 $3b^{3} = 1$
 $b^{3} = \frac{1}{3}$
 $5 = \frac{1}{3}$
 $5 = \frac{1}{3}$



THE Exponential Function

e = 2.718.

Any exponential $f(x)=ab^x$ can be rewritten as $f(x)=ae^{kx}$ for an appropriately chosen constant (a>0).

On your calculator graph y=e^x and y=5^x. Discuss the similarities and differences with your neighbor.

e^x>5^x where?
$$(-\infty,0)$$

Transforming Exponential Functions

Describe how to transform the graph of $f(x)=e^x$ into the graph of the functions given below.

- •g(x)= e^{2x} •h(x)= e^{-x} •k(x)= $5e^{x+3}$

Graph the function $f(x)=4(e^x)+1$ and analyze it for domain, range, continuity, increasing and decreasing behavior, symmetry, extrema, asymptotes and end behavior.

f(x)=4ex +1 Vertical stretch by 4 Up1

D: $(-\infty, \infty)$ R: $(1, \infty)$ Inc $(-\infty, \infty)$

1im f(x) -> 1

y=1 (0,3)

Bounded below by 1.